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PRECIPITATION MODEL FOR THE PLATTE RIVER VALLEY 

FROM GOTHENBURG TO GRAND ISLAND, NEBRASKA

by 

Aldo V. Vecchia, Jr.

ABSTRACT

A trigonometric linear model of the 1934 to 1978 monthly precipitation 
series for Gothenburg, Kearney, and Grand Island, Nebraska, is presented. 
Statistical comparisons supporting the validity of the simulated sequences 
to represent the historical series include quantile comparisons of this latter 
series to simulated monthly values along with comparisons of actual annual 
statistics to annual statistics obtained by aggregating the simulated monthly 
values.

The models are used to determine probabilities of within-year droughts 
and probabilities of drought durations for a 50-year simulation period. 
For purposes of this study, a drought occurs when precipitation is less than 
2/3, 1/2, or 1/3 of the historical mean value at each station for May-June, 
June-July, and May-June-July.



INTRODUCTION

The preservation or deterioration of the migratory bird habitat along the 
Platte River in south-central Nebraska is very dependent on the hydrology 
of the area. Data indicating the probability of occurrence of certain 
precipitation and runoff events can be used in making decisions for man-induced 
changes in the river system to achieve desired features of the habitat. These 
features include wide, shallow channels characterized by sparse vegetation on 
the river banks and channel islands. One hydrologic condition that affects 
the amount of vegetation within the habitat is little or no precipitation 
during various parts of the year. The impact of these precipitation 
shortages would be twofold: (1) The lack of surface moisture would naturally 
reduce the potential for the germination of new seeds and (2) little or no 
precipitation would cause an increase in ground-water pumping in the 
surrounding agricultural areas, thereby reducing the subsurface moisture 
content for existing vegetation along the river, which is hydraulically linked 
to the aquifer system.

The purpose of this report is to describe the design and development of a 
stochastic model of the precipitation in a critical habitat reach of the 
Platte River. The critical reach is defined in this report as the reach of 
the Platte River from Lexington to Grand Island, Nebraska (fig. 1). The 
precipitation in this reach is assumed to be adequately described by the 
monthly series of data collected at the Gothenburg, Kearney, and Grand Island 
precipitation stations. The model of the joint monthly precipitation for the 
three stations will be used to obtain the probabilities of within-year 
droughts of given durations and intensities during a 50-year planning period 
in order to evaluate the management alternatives affecting the habitat along 
the critical reach.

Two families of models are considered candidates to describe the monthly 
precipitation series: (1)_ The autoregressive integrated moving average (ARIMA) 
time series model and (2)_ the trigonometric linear model. A desirable 
property of either model is an adequate degree of accuracy in the reproduction 
and forecasting of precipitation while still maintaining parsimony of the 
parameters.

The ARIMA model fit to the precipitation data will be shown to be nearly 
identical to a sinusoidal model of period 12. The latter model is selected 
over the ARIMA model, because of the ease of use in simulating series, and 
because o£ the property of having a periodically stationary mean.

The sinusoidal model with a period 12 component was inadequate for 
use in simulation of some of the individual months, so components of period 
3, 4, and 6 were added to the model. These components were not strong 
enough to be included as nonstationary components in the ARIMA model, 
so the original ARIMA model was not extended to compare with the final 
trigonometric model.
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A transformation of the data which allows adequate representation of the 
monthly values is determined, even when using the same transformation for each 
of the 12 months; this transformation eliminates the need to estimate the mean 
and standard deviation of each month separately to standardize the data. This 
latter procedure involves estimating 24 parameters, each having only a few 
degrees of freedom, while the proposed transformation uses the entire data set 
for the estimation of each needed parameter.

PRELIMINARY DATA ANALYSIS

The monthly means and standard deviations of the precipitation series 
from 1934 to 1978 for Gothenburg, Kearney, and Grand Island are listed in 
table 1. The large difference in standard deviations among the months is 
important to note. For example, the standard deviation of the June values 
for Kearney is about 2.8, while the standard deviation for January is about 
0.4, a disparity ratio of about 7. Most time-series models or linear models 
assume a constant error variance for the whole series; thus, a transformation 
of the data to alleviate this problem is proposed. Graphs of the Gothenburg, 
Kearney, and Grand Island historical series from January 1, 1939, to 
December 31, 1978 (480 months) are shown in figures 2-4. In these figures, 
the months characterized by smaller average precipitation have a smaller 
variance than wetter months. The data also are truncated at zero and 
positively skewed, indicating that if a model were fit to the untransformed 
data, the random component would not be normally distributed. For example, 
if the deterministic part of the model gives a value of 0.5 inch for January, 
then the random component for that month cannot be less than -0.5 inch, 
because negative precipitation values are impossible. An objective of this 
report is to make the random component of the model approximately normally 
distributed for convenience in simulations and evaluation of probabilities. 
A Box-Cox transformation (Box and Cox, 1964), as described in the following 
section, was used for that purpose.
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DETERMINATION OF THE TRANSFORMATION PARAMETER 

Consider transformations of the form:

O) . (xt+c/-i > X>H) . and

, A=0 ; (2)

where ,., ,
Z - the transformed data value at time t;

X = actual data value at time t; and

c,A = constants to be determined.

Box and Cox OL964) explain how X and c can be estimated with the other 
parameters in the model using the method of maximum likelihood. Their method 
assigns a larger likelihood to those values of X which make the residuals 
approach a normal distribution. This functional form of the transformation 
was chosen because it is continuous at A=0, because:

llm = ita tt _ lQg 
A+0 A A-K) 1

by applying 1'Hopital's rule. All that is required of c is that it be
a constant that makes each value X +c positive, so it was chosen to be 0.01 and
only 'A was estimated.

Consider the estimation of A for the Kearney monthly precipitation series 
based on the assumption that this series follows an ARIMA model. The 
autocorrelations and the spectral density of the monthly precipitation totals 
at Kearney for 1934-78 are shown in figure 5. There is a periodicity of 12 
evident in both, indicating that an operation be performed on the series X

by the operator 1-1.73B+B , where B A = X . . In other words, a new series 
^ r t t-k

Y is formed from the original series by defining:

Yt = (l-1.73B+B2 lXt = Xt - 1.73Xt_ 1 + Xt_ 2 .

This operator was suggested by Gray and others (1978) to remove sinusoidal
12 

seasonality of period 12. The usual Box-Jenkins operator, 1-B , also removes
sinusoidal seasonality of period 12 as well as many other types of seasonality,

2 
but, in this instance, 1-1.73B+B adequately removes the nonstationarity.

No parameters need be estimated to remove the seasonality, because the 
operator is adaptive in amplitude. This can easily be seen by noting that:

C\ 1 -ji-a _L.-0 \f   v . 27Tt T ._27T(t-l) . . 27T(t-2) n ,..(1-1.73B+B ) (a sin--) = a sin  - - 1.73sin     -+ sin      = 0, (4)

regardless of the value of a. The autocorrelations of the series (1-1.73B+B )X

clearly indicated that it followed a moving average of order two, due to nonzero 
estimated autocorrelations for lags one and two, and nearly zero values for the 
remaining lags. Therefore, the following parametric family was postulated 
for the Kearney station:
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(1-1.73B+B2 )Z<X) = y + (1-8 B-8 B2 )A , (5)
_ L _L ^> L.

where ,,,.
Z is the transformed data;

{A } is a sequence of independent, identically 

distributed (iid) random variables, 

At ~N(0, a 2 ) ; and 

y, 8_, 8 ? , a2 are model parameters.

The natural log of the likelihood function can be shown to be 
approximately (Hipel and others, 1977):

_ qq n
ylog^-4- (A-l) I log(X+c) E L(X,8 8 y,a2 ) , (6)
z n t=l

where
SS = the sum of squares of the residuals from the model, 

which (given the data) is a function of the 
parameters; and

n = the adjusted series length (in this instance, 538, because 
two observations are lost due to the nonstationary 
operator),

The series was transformed with X = 1, 1/2, 1/3, 1/4, and 0, and the 
resulting series were each examined to insure that the transformation did 
not alter the type of ARIMA model followed. The time series parameters 
were then estimated for each value of X by the method of maximum likelihood 
with the following results:

1. Z = X (X = 1) (Value of the likelihood is the same as that for

Zt = (Xt+°' 01) -1) ; 

Model: (1-1-73B+B2 )Z = 0.53 + (1-1.69B+0.96B2 ) A ;

Residual SS = 1,426, L(X,0 ,6 ,y,a2 ) = -262 .

2. Z = (VX +0.01 -1)*2 (X=l/2) ;

Model: (l-1.73B+B2 )Z t = 0.13 + (1-1.64B+0.90B2 )At ;

Residual SS = 563.24, L(X,8 ,8 2 ,y,a2 ) = -36.78 .

3. Z t = (/X +0.01 -1)*3 (X=l/3) ;

Model: (l-1.73B+B2 )Zt = 0.094 + (1-1.62B+0.88B2 )Afc ;

Residual SS = 495.76, L(X,6 ,8 ,y,a2 ) = -10.054 .

11



4. Z = (/X +0.01 -1)*4 (X=l/4). ;
L. Lb

Model: (l-1.73B+B2 )Z t = 0.076 + (l-1.61B+0.87B2 )At ; 

Residual SS = 488.59, L(X,9 ,6 2 ,y,a2 ) = -10.141 .

5. Zt = log(Xt+0.01) (X=0) ;

Model: (1-1.73B+B2 )Zt = 0.023 + (l-1.61BH-0.86B2 )At ; 

Residual SS = 601.35, UX.e^e^y,a2 ) = -48.073 .

The log likelihood for different values of X assuming that the likelihood is a 
smooth, continuous function in X is shown in figure 6.

To see why X=l/3 is preferred over X=l, or X=0, graphs of part of the 
series of residuals from Z for each value of X are presented. When X=l,

the residuals are truncated negatively and positively skewed (fig. 7). The 
data in figure 8 (X=l/3) show great improvement, while figure 9 (X=0) 
indicates that taking logs of the data overcorrects, by grouping the positive 
residual values close to zero and making the negative values too large in 
absolute value.

JUSTIFICATION FOR USING A PERIODIC MEAN MODEL

The rainfall data showed a strong periodicity of 12, justifying the
2 use of the operator 1-1.73B+B . However, assume a time series follows a

deterministic mean that is a mixture of sines and cosines of period 12 with 
white noise added. Then:

2irt . . 2irt , ,-,*. 
e ; (7)

where {e } are distributed iid with mean 0 and constant variance; 
and:

(l-1.73B+B2 )Xt = (l-1.73B+B2 )e t + y ; (8)

where y = (l-1.73B+B2 )y ' = 0.27y'. In the rainfall model, after the 1-1.73B+B 

operation was performed on Z^~ , the resulting series followed a moving 

average of order two with parameters very near to 0 =1.73, and 62=-l«0, 

regardless of the value of X. That is, the model was very close to 

(1-1.73B+B2 ).Z* = y + (1-1. 73B+B2 )e ; thus, the driving mechanism behind 

the precipitation series may be a deterministic one with added white noise.

12
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The preceding paragraph seems to indicate that the ARIMA model is similar 
in its representation of past precipitation to a trigonometric linear model 
with period 12 component, the major difference being that the ARIMA model 
lacks a stationary mean. For example, if the model is assumed to be:

(1-1.73B+B2)Z^ = \\ + (l-6 1B-e 2B2 )At , A distributed iid (0, a 2 ), (9)

then the mean is not defined at time t unless Z . and Z ' are known. If 
the model is assumed to be

distributed iid(0,cr ), (10)
I- -L -L^. L. -LZ. l_ l_

E(Z<A) ). - W + ex cos^f + 8 2sin^f, (11)

a quantity that is easily computed for any month and does not change from 
year to year. For purposes of this report, the trigonometric linear model 
gives an adequate representation of the series and allows easier calculation 
of drought probabilities than the ARIMA model. The estimation of X for the 
trigonometric linear model is not presented because the results were nearly 
identical to those obtained for the ARIMA model.

DETERMINATION OF THE TRIGONOMETRIC LINEAR MODELS

The transformed data were modelled by a deterministic trigonometric 
component of period 12 with added white noise. However, the precipitation 
models with harmonics of period 12 only did not fit the data well 
enough to make inferences about some of the individual months, even 
though the overall yearly statistics showed a good fit. To improve the 
fit, harmonics of periods 3, 4, 6, and 12 were considered for inclusion in the 
model. These periods were chosen partly because of intuitive appeal, and 
partly because the spectral densities of the residuals from the models with 
only period 12 showed peaks near periods of 3, 4, and 6. The harmonics to be 
included in the model for each station were determined by using the forward 
regression technique (Draper and Smith, 1966) on each station separately. Only 
those variables that made a significant contribution to the prediction 
of precipitation were included in the model. It was assumed the Gothenburg 
and Grand Island stations are similar enough to the Kearney station to 
warrant using the same transformation for all three stations, because of 
the proximity of the stations and the similarities of their statistics. 
The models used are not regression models, but trigonometric linear 
models, because the independent variables are fixed, not random. This 
will not change the estimates of the parameters, but does make a difference 
in their standard errors. The following models were determined to be

optimal (t=l corresponds to January and Z = Z^ ). The cube root

transformation has been analyzed quantifying an explanation of skewness in 
precipitation distributions (Studd, 1970):

17



1.. Gothenburg:

= 0.2009*- 1.1956*008^1 - 0.1595*sin^f

+ 0. 1293*cos^~ + 0.1089*sin   
3 4

where {e } are iid normal CO, 0.861 ); R =50.2 percent

Kearney :

Z = 0.3492 - 1.

O t

2 ? 
where {e } are iid normal (0,0.898 ); R =47.0 percent

Grand Island:

Z = 0.3187 - 1.

2 2
where {e } are iid normal (0,0.895 ); R =45.1 percent

RESIDUALS CHECK 

The residuals from the above models were examined to insure that the
following assumptions were not violated: (1) The errors e are mutually

independent; and (2) e is distributed normally with mean 0 and variance a2

for all t. A visual inspection of the graphs of the residuals versus time for 
each station indicated no trends or abnormalities. The graphs of the auto 
correlations of the residuals for each station (fig. 10) show that the 
residuals have no significant autocorrelation. A histogram of the 
residuals for Gothenburg and Grand Island (fig. 11), with the series statistics 
(table 2), show that the residuals appear to be normally distributed, but that 
some differences exist in the means and standard deviations among the months. 
These differences were considered minor enough for the model to be used. 
The actual data are compared with several simulations from the model in a 
later section of this report.
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MULTIVARIATE STRUCTURE

The models were determined for each station individually. However, if 
joint probability statements are to be made about the three stations, a 
multivariate structure must be added to the model. Because the stations are 
geographically near each other, they are assumed to be similar in their 
precipitation patterns. Therefore, if the error in predicting rainfall at any 
one station is a large positive number (the rainfall is much greater for that 
-month than the model predicts), then the errors at the other stations should 
tend to be positive. It is reasonable to expect the error sequences to be 
correlated. This is indeed the case, as the estimated covariance matrix of 
the computed residuals is:

Gothenburg 

I = Kearney

Grand Island 

the corresponding estimate of the correlation matrix is:

Gothenburg Kearney Grand Island

Gothenburg 

R. = Kearney

Grand Island

Therefore, the final model for the joint monthly precipitation series at 
Gothenburg, Kearney, and Grand Island is:

Dthenburg

0.741

.546

- .484

Kearney

0.546

.805

.622

Grand Is la

0.484

.622

.799 -

1.0

.706

- .628

0.706

1.0

.773

0.628

.773

1.0

= deterministic component + e ;

(K) (K) T* = deterministic component + e^ ,

(GI) (GI) Z^ = deterministic component 4- e ;

where the deterministic components are given in the regression equations above,

\ I I/ (G) (K) (GI) \ \and the sequences e [ = < le » e *! > e I / are independent and identically
( ) I \ fc / I 

distributed trivariate normal random vectors with mean 0^ and covariance matrix

1 . Graphs of 40-year model simulations are presented for Gothenburg (fig. 12), 

Kearney (fig. 13), and Grand Island (fig. 14).
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EVALUATION OF THE MODEL'S PERFORMANCE

One method of evaluating model adequancy is to determine how well it 
reproduces monthly means and standard deviations of past data. Note that the 
historical record is assumed to be one possible realization from an underlying 
model driving the system. Therefore, the purpose is not to exactly reproduce 
past statistics, but to determine that the realization that occurred could have 
come from the developed model within a reasonable margin of accuracy (which 
depends on the purpose of the model). Monthly means and standard deviations 
for the actual data and for 10 model simulations of 40 years each are presented 
in table 3 (Gothenburg), table 4 (Kearney), and table 5 (Grand Island). A 
graphical display of the means for Kearney is shown in figure 15. Data in the 
tables indicate that values for January and February seem too large in the 
simulations for Kearney and Grand Island, and the September simulations may be 
slightly distorted. Graphs of the last 40 years of actual precipitation 
and corresponding random simulations for each station, from the model, are 
compared in figures 2 through 4 and 12 through 14. Some of the simulations 
appear more like the actual data than others. The purpose of the comparative 
graphs is to generate many possible future realizations and observe which and 
how many have a certain event for which a probability is desired.

The distribution of values for all the months combined is another check of 
the adequacy of the model. Although these values do not represent a random 
sample from a single distribution, the simulated sequences should closely 
resemble the past data. t Histograms of the actual data (1939-78) are shown 
in figures 16, 17, and 18, versus a corresponding 40-year simulation for 
each station (the same simulations as those used for figures 12, 13, and 14); 
some quantile values of actual versus simulated data are shown in table 6.

As a final check on the monthly model, the generated monthly series were 
summed to obtain yearly series and compared to the historical record. Statistics 
of the actual yearly precipitation from 1939 to 1978 compared to model 
simulations of 40 years are presented in table 7. The simulations used 
are the same as those shown in figures 12 through 14. The simulations have 
smaller means than the actual data; however, this is not surprising because of 
variability of the observations and the relatively small sample size. The 
autocorrelations up to lag 10 for the historical and simulated sequences are 
presented in figure 19. No significant autocorrelation is present, indicating 
that the yearly values are virtually independent.

CALCULATION OF DROUGHT PROBABILITIES

The analysis and discussion in the following paragraphs will illustrate 
how the precipitation model can be used: (1) To determine periods of rainfall 
shortages of given severities and durations from the generated sequences, and 
(2) to obtain the probabilities of these occurrences within the next 50 years. 
Because no definitive critical period of precipitation for germination is 
available at this time (U,S. Fish and Wildlife Service, oral communication, 
1980), arbitrary choices of May, June, and July were made as the critical 
months during which the seeds would require precipitation most. With various 
combinations of these 3 months defining the duration of within-year drought 
periods, arbitrary choices of severity were taken as 2/3, 1/2, and 1/3 of the
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sequences at Gothenburg, Kearney, and Grand Island.
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historical mean values of rainfall for each of the respective periods for the 
three sites. Because no critical drought severity could be defined at this 
time, the three values were chosen to attempt to envelope the true-critical 
severity and offer some relationship between drought severity and probability 
of occurrence, to aid in future decision processes.

In the model discussed, it is assumed that the monthly precipitation 
values are independent. Hence, any combination of monthly values (say Y) 
within a year is independent of any combination of monthly values from any 
other year. This allows easy calculation of the probability of many events 
involving Y during the next 50 years knowing the cumulative distribution 
function (cdf) of Y for a single year, because a 50-year series is a random 
sample from the cdf of Y. Denote this cdf as:

F(x) = Probability[Y^x] ;

and define the sample cdf^of Y as
n

i: ,x] E Fn (x) (12)

where {y1 ,y9 , . . . ,y } is a random sample of size n from F ; and

0, otherwise

(13)

By the Glivenko-Cantelli theorem (Gibbons, 1971) F (x) converges uniformly with 

probability one to F (x). Therefore, to approximate F (x), a sample of size n

can be generated and the corresponding sample cdf calculated. The sample size 
must be large to achieve accurate results for rare events. As a general rule 
in this report, the sample cdf will be assumed to adequately estimate the true 
cdf for all x for which:

n , .
7 I, (yil > 10 .

This rule can be used to pick n by noting that:

n

1=1 .co xl ' J
= nF^7 (x) . (14)

For example, if a value x for which the precipitation exceeds with 

probability 0.99 is the smallest x value of interest, then F (x ) = 0.01, and 

n would be 1,000, for one to expect, on the average, that:

n /v
= 10 .

1=1
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For the drought analyses in this report, the following random variables 
were computed for each of 2,000 years of jointly simulated precipitation for 
Gothenburg, Kearney, and Grand Island:

(x) =

= XM + X^U + X^1 ; Fy (x) =

where
A = total precipitation for May of year t;

X = total precipitation for June for year t; and

X = total precipitation for July for year t.

Because n was chosen to be 2,000, it is expected that droughts with probability 
as small as 0.005 will occur about 10 times. For each station, {Y. ; i=l, 
2,3; t=l,2,...,2,000} were computed, and the sample cdf's were used to estimate 
FY (x) , i=l, 2, 3, for the values of x given in table 8. Another, perhaps

more important, set of random variables were computed using the three-station
G K GI average precipitation series. Define W = (X + X + X ) ^ 3 = average

precipitation series and let ... _
N 111uit = wt + wt ;

U2t = W^u + vrj1 ; and

U3t

where

W = average precipitation value for May of year t;

W = average precipitation value for June of year t; and 

W = average precipitation value for July of year t.

The W series is an areal average of the three stations and is important in 

evaluating drought probabilities over the entire critical reach. The values 

at which the cumulative cdf's for U , IL, and IL were estimated are given in

column 4 of table 8. Forty years of past precipitation records (1939-78) were 
used to estimate the mean rainfall y in defining drought severity levels 1/3 y, 
1/2 y, and 2/3 y. The rationale for using historical data rather than the 
model to estimate y is that the state of the environment in the critical 
reach is the result of occurrences in the past. Therefore, any events that 
take place to change the environment from its present state need to be in 
reference to the past.
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Table 8. Values at which the cumulative

distribution function is estimated 

[y = Mean of drought period, in inches]

May

and

June

June

and

July

May,

June,

and

July

Fraction 

of mean

y

2/3 y

1/2 y

1/3 y

y

2/3 y

1/2 y

1/3 y

y

2/3 y

1/2 y

1/3 y

Gothenburg

7.549

5.033

3.774

2.516

6.705

4.470

3.352

2.235

10.136

6.757

5.068

3.379

Kearney

8.056

5.371

4.028

2.685

7.103

4.735

3.551

2.368

11.018

7.345

5.509

3.673

Grand Island

7.735

5.157

3.867

2.578

6.581

4.387

3.291

2.194

10.445

6.963

5.222

3.482

Three-station 

average

7.780

5.187

3.890

2.593

6.796

4.531

3.398

2.265

10.533

7.022

5.266

3.511
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Column one of table 8 is interpreted as follows: The mean of YI 
was computed for 1939-78 at the Gothenburg station and was found to 
be 7.549, the first entry under Gothenburg. The following three entries under 
Gothenburg are 2/3, 1/2, and 1/3 of this mean. Similar calculations 
were performed for Y^ and Y~ and appear below YI in the table. The same

computations were performed for Kearney, Grand Island, and the three-station 
average and appear in columns 3, 4, and 5.

The counts:

/ 200° r ^ 200° m ^ \ 
( J I <y±t> or I I <Ult> )
I ' ' (  0° "5C I ^ I  oo -v- I I 
\ t=l ^ > XJ t=l ^ > XJ /

and the sample cdf for the corresponding x values in table 8 are given in 
table 9. The data in table 9 can be used to determine the probabilities of 
many droughts during the next 50 years. For example, let N be the number of 
times during the next 50 years for which Y.. is less than or equal to 4.028

(1/2 the mean of Y. for the past 40 years) at Kearney. The corresponding 

probability in table 9 is 0.093, so:

P[N=k] = ( f 0 ) (0. 093) k (0. 907) 5°"k

because N is distributed as a binomial with parameters 50 and 0.093.

An important question that can be answered by the data in tables 8 and 9 
is: What is the probability of a drought of duration m years or longer during 
the 50-year planning period? Suppose a drought is said to occur whenever Y.

is less than a certain amount x, and that the duration of the drought is the 
number of years in a row that Y. is less than x. The question above would

then reduce to finding the distribution of the longest number of successes in 
a row in a sequence of Bernoulli trials, with success probability equal to 
probability IY. £x] . David and Barton (1962) show that if a sample of size r

is drawn from an urn consisting of black and white balls, then, given that r.. 

white and r ? = r-r.. black balls were selected, the distribution of the longest

run K of white balls is:

t r 
ProbfK

where z^ = t  factorial power of z = z(z-l)       (z-t+1) . Let M be the largest 
number of successes in a row in a sequence of 50 Bernoulli trials with 
success probability, p; then:

50
P[M >, m+1] = I PIM > m+l|N = n]-P{N = n] ; 

n=0

where N is the total number of successes in the 50 trials; (hence N has a 
binomial distribution). Therefore:
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50 50
P[M * m+1] = I P (m,50,n)-P[N = n] = I P (m,50,n) " ^ n

n=0 n=0

where P, (m,50,n) can be evaluated on a computer as accurately as desired. Note 

that the summation in P (m,r,r..) is not really an infinite sum for fixed m, r,
K. JL

and r.. , because the terms become zero, whenever t > r~ + 1 or tm+t > r.. . In

this context, the probability of one or more droughts of m+1 years or longer 
during the next 50 years would be

P[M ^ m+1]

where
p = ProbfY. £ x]

and a drought occurs whenever Y. £ x. The probabilities of some droughts 

involving Y_ for Grand Island are presented in table 10.

CONCLUSIONS

The precipitation models presented in this report are. offered primarily 
as decision tools for use in the management of the waterfowl habitat along 
a critical reach of the Platte River. Data from the precipitation stations at 
Gothenburg, Kearney, and Grand Island, Nebraska, were assumed to be adequate 
indicators of the precipitation patterns throughout the critical reach. Both 
ARIMA and trigonometric linear models were considered in representing the 
precipitation patterns at the three stations, but the trigonometric models 
were chosen for use in the analysis because they were superior for long-term 
simulations and drought analyses.

The precipitation models were used to determine the probability of 
occurrence of periods of less than average rainfall within the reach. The 
primary problem which the models addressed was delineating the frequency of 
insufficient rainfall which would inhibit vegetation regrowth along the banks 
and channel bars of the Platte River. Knowing the critical period and the 
amount of rainfall necessary to support revegetation along the reach, habitat 
managers could use tables, such as 8 and 9, to estimate either the number of 
times this amount will not be attained during the next 50 years, or the number 
of successive years for which this amount will not be attained during the 
50-years. The critical within-year periods used were various month combinations 
£rom the set, May-June-July, and the drought limits were defined as 1/3, 1/2, 
and 2/3 of the respective historical mean precipitation. With the calculated 
frequency values, managers would have an idea of how often alternative methods 
might become necessary to remove the vegetation to insure proper habitat 
characteristics and subsequently, an estimate of the projected costs of this 
particular aspect of habitat management could be made.
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Table 10. Probabilities of some droughts of duration

m years or longer for Grand Island 

[Total for June and July; y = mean of drought period, in inches]

m 

years

1

2

3

4

5

6

7

8

9

10

11

12

6.581 = y

1.000

1.000

.9975

.9429

.7671

.5362

.3391

.2024

.1171

.0666

.0376

.0211

Critical

4.387 = 2/3y

1.000

.9353

.4641

.1403

.0367

.0093

.0023

.0006

.0001

.0000

.0000

.0000

level (x)-

3.291 = l/2y

0.9945

.3581

.0413

.0041

.0004

.0000

.0000

.0000

.0000

.0000

.0000

.0000

2.194 = l/3y

0.7455

.0342

.0009

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

  x is the level which defines the occurrence of a drought
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